Chemistry of Ash-Deposits on Gas Turbines Hot Parts: Reactivity of Nickel, Zinc and Iron Oxides in (Na, V, S) Molten Salts

Author:

Rocca Emmanuel1,Aranda Lionel1,Molière Michel2

Affiliation:

1. Université Henri Poincaré-Nancy I

2. GE Engergy Products Europe

Abstract

When ash-forming oils or contaminated distillate oils are used as fuels in land-based, marine or aero gas turbines, the hot gas path components, mainly the partition vanes and the blades of the expansion turbine are subjected to the deposition of slags that are corrosive at high temperature due to their low liquidus temperature. This hot corrosion process - if not properly inhibited - entails a dramatic life reduction of the hot gas path parts. MgO is a traditional, efficient inhibitor. Recently, it has been found that NiO also suppresses the corrosiveness of the (Na,S,V) melts by trapping vanadium in a refractory vanadate (Ni3V2O8); this compound is friable and does not tend to accumulate on turbine blades. The use of inhibitors entails losses in both machine performance and availability. Moreover, other metals can interfere with the inhibition process. In particular, zinc and iron are often inadvertently introduced in gas turbines fuels during their transportation or storage and they can significantly interact with nickel. This paper distinguishes the interactions between NiO on one hand and both ZnO and Fe2O3 on the other hand in the general complex chemistry of ash. The thermochemical study of (Na,S,V) melts in presence of Ni confirms that nickel is a good "trapper" of vanadium oxide at high temperature. However, they also show that nickel can react with iron to form the very stable ferrite NiFe2O4 and a low melting point vanadate phase. On the contrary, the presence of zinc affects to a lesser extent the reactivity of NiO versus V2O5 despite the formation of Ni1-xZnxO solid solutions.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3