Microstructural Evolution during Friction Stir Welding of Ultrafine Grained Al Alloys

Author:

Sato Yutaka S.1,Urata M.,Kurihara Y.,Park S.H.C.1,Kokawa Hiroyuki1,Ikeda Kazutaka1,Tsuji Nobuhiro2

Affiliation:

1. Tohoku University

2. Osaka University

Abstract

Recently, several metallic materials with ultrafine-grained structures and characterized by high strength and toughness have been developed. When these ultrafine-grained materials are practically used, welding and joining processes are required. However, conventional fusion welding processes result in deterioration of the good mechanical properties of these ultrafine-grained materials due to the drastic grain growth of the ultrafine grains. On the other hand, friction stir welding (FSW) is a solid-state joining process having lower heat-input than fusion welding processes, enabling formation of a fine grain structure in the stir zone. Thus, this process would effectively alleviate deterioration of mechanical properties of the ultrafine-grained materials. The authors applied FSW to ultrafine-grained Al alloys and then examined the microstructural features associated with hardness in the friction stir welds. The present paper reviews microstructural evolution of ultrafine-grained Al alloys, produced by equal channel angular pressing (ECAP) and accumulative roll-bonding (ARB), during FSW.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3