Minimum Ionizing Particle Detector Based on p+n Junction SiC Diode

Author:

Moscatelli Francesco1,Scorzoni Andrea2,Poggi Antonella1,Bruzzi Mara3,Lagomarsino Stefano3,Sciortino Silvio3,Wagner Günter4,Nipoti Roberta5ORCID

Affiliation:

1. CNR-IMM

2. Univeristà di Perugia

3. Polo Scioentifico

4. Leibnitz Institut für Kristallzüchtung IKZ

5. CNR-IMM Sezione di Bologna

Abstract

In this work ion-implanted p+/n diodes have been used as minimum ionizing particle (MIP) detectors. The diode structure is based on a 0.45 $m deep, NA = 4×1019 cm-3 doped p+ anode, ion implanted in an n-type epilayer with thickness equal to 55 $m and nominal donor doping ND = 2×1014 cm-3. The diode breakdown voltages were above 1000V. At 1000V reverse bias the diode leakage current was of the order of 1 nA. The punch through depletion voltage was nearing the range 220-250 V. The charge collection efficiency to minimum ionizing particle was investigated by a 90Sr β source. The pulse height spectrum was measured as a function of the reverse voltage in the range 0-605 V. At each bias point the signal was stable and reproducible, showing the absence of polarization effects. At 220 V the collected charge was 2970 e- and saturated at 3150 e- near 350 V. At the moment, this is the highest collected charge for SiC detectors. At bias voltages over 100V the spectrum was found to consist of two peaks clearly separated. Around 250 V the signal saturates, in agreement with CV results.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3