Affiliation:
1. Instituto Politécnico Nacional-ESIQIE
2. RWTH Aachen University
Abstract
In the present study the superplastic behavior of Al-6%Mg–0.5%Cu and Al–8%Mg– 0.5%Cu in a coarse grain size condition has been studied. The alloys are melted in an electrical furnace under argon atmosphere. The ingots (25 mm thick) are homogenized at 400 °C during 72 h and then rolled at 430 °C to a thickness of 5 mm. The mean grain size after rolling is 55 µm for the 6%Mg alloy and 61 µm for the 8%Mg alloy. Tensile test specimens are machined from the rolled plate in the rolling direction. Strain-rate-change tests at temperatures between 300 and 450 °C and strain rates between 1x10-4 and 1x10-1 s-1 are carried out to determine the strain rate sensitivity of the flow stress. Finally, elongation to failure tests are conducted at temperatures and strain rates where the alloys show a high strain rate sensitivity. Elongations higher than 390 % are obtained for the 8%Mg alloy. It is observed that the grip regions of the deformed samples show coarser grains than the regions near to the fracture surface. This means that grain refinement takes place during deformation, suggesting that the principal deformation mechanism is dislocation creep.
Publisher
Trans Tech Publications, Ltd.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献