The Influence of Material Density on Bipolar Charge Transport in Polymer-Based Electronic Applications

Author:

Ramos Marta M. D.1,Correia Helena M.G.1,Carmo Hugo1

Affiliation:

1. Universidade do Minho

Abstract

Using a mesoscopic modelling approach, the authors performed computer experiments to study the influence of polymer density on bipolar charge evolution through thin layers of polydiacetylene (PDA) exhibiting specific microstructures. We found that the competition between charge transport, trapping and recombination within the polymer layer leads to several general trends, some of them being non-intuitive, as one varies polymer density. Our results show that polymer density mainly affects current and recombination efficiencies in the absence of defects or impurity states. The overall trends depend both on chain orientation relative to the electrodes and on the strength of the external applied electric field. These results suggest that adequate modelling of charge transport in electronic and optoelectronic devices based on conducting and semiconducting polymers, such as PDA, must include their structure and related key factors at mesoscopic scale. Such models provide the necessary knowledge-base to optimize the polymer film structure for electronic applications.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3