Phase Transformation for Primary Particles in the Surface Regions of an AA1200 Alloy

Author:

Pettersen Tanja1

Affiliation:

1. Hydro Aluminium a.s.

Abstract

In the present investigation the particle structure in an AA1200 sheet ingot used for litho applications has been studied. Caustic etching of the as-cast material was seen to result in a zone close to the surface with a different etching response. This zone was identified as what is known as a fir-tree zone or an Altenpohl zone [1,2,3,4]. A variation in particle type over the cross section of the as-cast ingot was seen to follow the differences in etching response. After heat treatment of the material, the fir-tree zones were no longer visible, and the accompanying change in particle structure was studied. Samples from the subsurface regions and from a distance of ~20 cm from the surface has been investigated before and after heat treatment. In the as-cast material, the sample from the surface was dominated by featherlike particles with long strings of particles, identified as AlmFe. While closer to the centre Al3Fe and Al6Fe were seen to be the main phases, however, some AlmFe and probably some α-AlFeSi was also found in this sample. After heat treatment, the particle structure was seen to change, and the surface sample contained mainly Al3Fe in addition to a small amount of AlmFe. The change in particle structure during heat treatment is discussed with reference to the change in etching response.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference12 articles.

1. Altenpohl D., Z. Metallkde., 44, 1953, 536-330.

2. Altenpohl D., Z. Metallkde., 46, 1955, 535-544.

3. Westengen H., Proceedings of the 7th Int. Leichtmetalltagung, Loeben-Wien, 1981, 103-105.

4. Brusethaug S., Porter D., Vorren O., Proceedings of the 8th Int. Leichtmetalltagung, LoebenWien, 1987, 472-476.

5. Simensen C.J., Fartum P. and Andersen A., Z. Anal. Chemie 319, 1982, 286-292.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3