Investigation Texture in Ni-W Alloy Substrates for Coated Conductors

Author:

Zhao Yue1,Suo Hong Li1,Liu Min1,He Dong1,Zhang Ying Xiao1,Ma Lin1,Zhou Mei Ling1

Affiliation:

1. Beijing University of Technology

Abstract

It is well know that Ni-5at.% W(Ni5W) and Ni-9.3at.% W(Ni9W) alloy substrates are two kinds of promising materials to be employed in coated conductors. The Ni5W substrate is very easy to produce cube texture, while the Ni9W alloy has a lower magnetic property and higher strength. However, the pure cube texture are not capable to be obtained in Ni9W alloy. In this work, the preparation and texture development in both Ni5W and Ni9W alloy substrates have been reported. Highly biaxial textured Ni5W substrate was fabricated by cold rolling, followed by three different annealing routes. The texture analysis indicated that a sharp cube texture was formed after annealing at a wide temperature range of 800-1100°C in as rolled Ni5W substrate. The high quality of cube orientation was obtained after a two step annealing (TSA) with farthing twin boundaries analyzed by EBSD. Furthermore, in order to obtain a pure cube texture in Ni9W alloy substrate, a typical rolling process was performed and the deformation texture was optimized in these substrates. The designed deformation texture components were obtained in Ni9W alloy when pre-heating the ingot at 250 °C before performing a cold rolling, which shows a possibility to form cube texture in Ni9W alloy substrate after annealing.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3