Metal Oxide Nanoparticles Obtained by Microwave Synthesis and Application in Gas Sensing by Microwave Transduction

Author:

Rossignol Jerome1,Stuerga Didier1

Affiliation:

1. Laboratoire Interdisciplinaire Carnot De Bourgogne UMR

Abstract

In literature, many papers describe the applications of semiconductor as sensitive material in sensor field. The gas sensor using tin oxide requires a strictly controlled high operating temperature in order to detect both reducing and oxidizing gases. The semiconductor nanoparticles, with their high specific surface area, increase the gas sensing performance. The originality of this work is to valorize the nanoparticle of metal oxide like SnO2, TiO2 obtained by microwave thermohydrolysis synthesis, using a gas sensing microwave transduction. The present synthesis is to prepare metal oxide nanocrystalline powder with a high surface area by microwave-induced thermohydrolysis. We propose to study the influence of the metal oxide nanoparticle, as a sensitive layer, in gas sensing measurement. The pollutant is added into an argon flow (dynamic regim). This work highlights a specific sensor response to each ammonia concentration at room temperature. It shows a quasi-linear relationship between the set of points of the real part of the response and the ammonia concentration. The authors are currently working on these issues as well as the interaction mechanism between adsorbed gas molecules and metal oxide films.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3