Qualifying Measuring Systems by Using Six Sigma

Author:

Loderer Andreas1,Galovskyi Bogdan1,Hartmann Wito1,Hausotte Tino1

Affiliation:

1. Friedrich-Alexander-Universität Erlangen-Nürnberg

Abstract

The technology of sheet-bulk metal forming enables the production of complex workpieces with filigree surface structures in only a few forming steps. In order to provide a rapid and production-related workpiece inspection of not only large workpiece features, but also small features in an appropriate quality, a multi-sensor optical measurement system with different resolutions is required. Workpiece features of medium size can be measured by two types of fringe projection sensors. With a structured approach according to Six Sigma, which is based on the five phases design, measure, analyze, improve and control complex tasks are divided into smaller individual problems. In each phase the Six Sigma method recommends tools for solving the individual problems effectively. With the support of the Six Sigma guideline an exemplary sheet-bulk metal forming workpiece feature is used in order to qualify the two measuring systems for a production-related measurement. After defining the explicit goal for the investigations, a detailed analysis of the measurement process leads to a couple of relevant influences. These are input factors for the design of experiments. By a full factorial design, not only an influence of a factor itself, also the interactions between multiple factors can be detected. In the analyze-phase, these results are calculated by different statistical methods. To present the results in a comprehensible way several types of diagrams are used. The shown approach gives an example for a traceable and methodical way to qualify a measurement system for challenging measurement tasks.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Reference6 articles.

1. M. Merklein, J.M. Allwood, B. -A. Behrens, A. Brosius, H. Hagenah, K. Kuzman, K. Mori, A.E. Tekkaya and A. Weckenmann, Bulk forming of sheet metal, Annals of the CIRP, vol. 61(2), pp.725-745, (2012).

2. M. Schaper, Y. Lizunkova, M. Vucetic, T. Cahyono, H. Hetzner, S. Opel, T. Schneider, J. Koch, Sheet-bulk metal Forming a new process for the production of sheet metal parts with functional components, Metallurgical and Mining Industry, vol. 3/7, pp.53-58, (2011).

3. C. Ohrt, M. Kästner, E. Reithmeier, J. Weickmann and A. Weckenmann, Optische Inspektion von Blechmassivumformteilen und -werkzeugen mit feinen Nebenformelementen, Technisches Messen tm, vol. 79(2), pop. 95-102, (2012).

4. C. Ohrt, W. Hartmann, J. Weickmann, M. Kästner, a. Weckenmann, T. Hausotte and E. Reithmeier, Holistic measurement in the sheet-bulk metal forming process with fringe projection, Key Engineering Materials KEM 504-506, pp.1005-1010, (2012).

5. G. Berndt, E. Hultzsch and H. Weinhold, Funktionstoleranz und Meßunsicherheit, Wissenschaftliche Zeitschrift der Technischen Universität Dresden, vol. 17, pp.465-471, (1968).

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Measuring Systems for Sheet-Bulk Metal Forming;Key Engineering Materials;2015-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3