Development of a Small Rotary Multi-Jet Abrasive Fluid Jet Polishing Tool

Author:

Tsegaw Assefa Asmare1,Shiou Fang Jung1

Affiliation:

1. National Taiwan University of Science and Technology

Abstract

Most optical glasses are in recent years being manufactured by diamond turning processes which has certainly modernized the field of production of optics. Confines of diamond turning for both form and surface finish accuracy have not been reached, yet. In advent of contemporary technology, high precision finishing techniques are of great concern and the need of present industrialized-scenario. This paper presents the development of a small rotary multi-jet abrasive fluid jet polishing tool for use in polishing of optical glasses. The newly designed and manufactured tool has relative angular speed with respect to the spindle of machining centre and is capable of polishing at micro levels. The paper also investigates the optimal polishing parameters for selected, crown optical glass based on experiments conducted using Taguchi’s experimental method. According to the possible number of control factorsL18orthogonal array was used. ANOVA analysis was carried out to determine the main factors which would affect the surface roughness significantly. Consequently, a 2.5 μm size of Al2O3abrasive, 10wt% abrasive concentration, 40 rpm of polishing head rotation, 6 numbers of nozzles, 6 kg/cm2of fluid pressure, 45minuet of polishing time and 40% of step over have been found to be the optimal parameters. It was observed that about 97.22% improvements on surface roughness; Ra, from 0.360 μm to 0.010 μm has been achieved using the optimal parameters. In addition to this; rotation of polishing head, applied fluid pressure and polishing time were found to have significant effect on surface roughness improvement.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3