Research on the Characterization of Ultra-Smooth K9 Glass Surface Polished by Nanoparticle Colloid Jet Machining

Author:

Song Xiao Zong1,Zhang Fei Hu2

Affiliation:

1. Lanzhou University of Technology

2. Harbin Institute of Technology

Abstract

In this work, optical K9 glass surface has been flattened by nanoparticle colloid jet machining, which is an ultra-smooth surface processing technique utilizing surface chemical effect between work surface atoms and nanoparticles in alkaline colloid to remove the uppermost surface atoms. The surface removal process of nanoparticle colloid jet machining has been investigated through K9 glass polish experiments. And the characterizations of ultra-smooth K9 glass surface polished by nanoparticle colloid jet machining have also been studied in this paper. Surface profiler and atomic force microscopy (AFM) are used to observe the surface microscopic morphological characteristics of K9 glass sample before and after polishing by nanoparticle colloid jet machining. The measurement results of processed surface prove that the primary scratches on the original surface have been completely wiped off by nanoparticle colloid jet machining and the roughness of the K9 glass surface has been improved to be less than 1 nm (Rq). Autocovariance (ACF) is investigated along a cross section of the K9 glass surface to determine the dominant spatial frequencies. The ACF curves show that the surface morphology of K9 glass processed by nanoparticle colloid jet machining is completely different from the preprocessed surface. The final K9 glass surface has been flattened by nanoparticle colloid jet machining. The microscopic morphological profile of the final K9 glass surface becomes increasingly smooth and eventually close to a flat state.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3