Use of FEM and DoE to Reduce the Forming Force during Cold Extrusion of Prismatic Cell Housings

Author:

Austen Michael1,Noneder Johannes2,Merklein Marion2

Affiliation:

1. Robert Bosch GmbH

2. Friedrich-Alexander-Universität Erlangen-Nürnberg

Abstract

These days, the call for more efficient cars, e.g. EURO 6, to reduce substantial the emissions of carbon dioxide and nitrous oxide raises the demand and development for Battery Electric Vehicles (BEV) or Plug-in Hybrid Electric Vehicles (PHEV). Thus, the German Government in cooperation with the industry has the goal to get at least 6 million electric vehicles on German streets by the year 2030. Until today battery systems increase the cars weight significantly, therefore weight reduction and utilization of the required space are two of the most important strategies. Because of its low density and high formability aluminum is preferred as cell housing material. Besides a light material it is necessary to use the required space of the battery pack in the car as efficient as possible. Thus a prismatic shape is favored compared to a cylindrical one. Unfortunately a prismatic cell causes an asymmetric material flow and an asymmetric tool loading during the production via bulk metal forming as the material tends to flow into the direction of the larger edges of the housing walls. That is why new forming tools for bulk forming have to be developed. To do this economically the development will be done by using design of experiments (DoE) and the finite element method (FEM). On the one hand DoE shortens time-consuming FE-simulations by stating exactly which simulations need to be done to identify main determining factors for the personal command variable(s) e.g. tool lifetime. On the other hand FEM can be used to achieve simulation results, e.g. tool loading, which are comparable to real life experiments. By using DoE, 2D FE-simulations show that the geometry of the punchs extrusion shoulder can decrease the required forming force precisely. In addition the geometry of so called deceleration seams can affect the forming force in minor degree. In combination of all significant geometric parameters and the number and position of deceleration seams the tool loading of a cold extrusion punch could be reduced significantly.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3