Comparative Study on Parametric Analysis of μEDM of Non-Conductive Ceramics

Author:

Ojha Nirdesh1,Zeller Florian1,Müller Claas1,Reinecke Holger1

Affiliation:

1. University of Freiburg

Abstract

Characterized by excellent material properties such has high mechanical, thermal and chemical stability technical ceramics such as ZrO2, SiC, Si3N4and AlN are increasingly being used for various applications. Traditional means of machining sintered ceramics are expensive and limited by geometry. Electrical discharge machining (EDM) is an electro-thermal machining process used to structure conductive materials. By applying a conductive layer (denoted as assisting electrode) on top of the non-conductive material, the EDM process can also be used to structure insulating ceramics. This paper presents a comparative study on the major machining parameters affecting the µEDM process of non-conductive SiC, ZrO2, Si3N4and AlN ceramics. The influence of five major machining parameters (current, open-circuit voltage, gap voltage, duty-cycle and servo) over two responses (material removal rate (MRR) and tool wear rate) is investigated for each ceramics material. The underlying reason for the variation in the MRR among the different ceramics is examined by comparing the material properties. Melting point of the ceramics material has an effect on the MRR for the µEDM of different ceramics. The bulk resistance value of the ceramic material does not have an influence on the MRR for the µEDM of different ceramics. Scanning electron microscope (SEM) images of the cross section of the unprocessed and µEDM processed surface of these ceramics have been analyzed. The SEM micrographs show that the µEDM process does not affect the ceramics bulk. It also confirmed spalling as one of the dominant material removal mechanism for ZrO2ceramics.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3