Improving the Ramp-Up Process of a Body-Construction Line by Numerical Supported Design of Clamping Devices and FEM Based Tolerance Prognosis

Author:

Landgrebe Dirk1,Ackert Patrick1,Grützner Raik1,Weber Johannes1,Mauermann Reinhard1,Tegtmeier André2

Affiliation:

1. Fraunhofer Institute for Machine Tools and Forming Technology IWU

2. Porsche Leipzig GmbH

Abstract

The use of FEM (finite element method) to assistant in ramp-up processes of car body construction lines is increasing, thanks to developments in recent years [1-3]. Car body manufacturing begins with sheet metal forming, while in subsequent steps the inner structures of the vehicle are assembled and connected to the outer skin by hemming. With reference to the current state of the art, there is no methodology which can reliably predict the dimensional accuracy of body parts through metal forming [4].Additionally, several methods to predict the distortion of joining and the dimensional effect of clamping during the assembly process were presented and validated [4-11]. Dimensional effects of the clamping process are basically the result of a deliberate alignment, other than the given values of construction to compensate dimensional inaccuracy of single parts from the body shop. These deliberate alignments are generally effected through a translation of clamps and pins in the clamping device. Until now, most of the methods of clamping and joining simulation presented have been verified using academic samples.In this report, the quality of forecasting in real problems during a ramp-up process will be verified and expanded. As part of a national project, co-funded by Sächsische Aufbaubank (SAB), the potential of FEM to assist in the ramp-up process were reviewed in a cooperative effort between Porsche Leipzig GmbH and Fraunhofer Institute for Machine Tools and Forming Technology (IWU). Furthermore, it will be shown that developed methods are able to represent the influence of deliberate positioning of clamps in complex samples. For the first time the quality of forecasting through the translation of locating pins is numerically and experimentally qualified.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Field meta modelling for process design in complex sheet metal forming;IOP Conference Series: Materials Science and Engineering;2022-05-01

2. Principal component analysis and singular value decomposition used for a numerical sensitivity analysis of a complex drawn part;The International Journal of Advanced Manufacturing Technology;2017-09-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3