A Novel Tape and Diamond Process Developed for Polishing Hard Substrates

Author:

Yeh Rong Hwei1,Chao T.M.2,Lee Cheng Kuo2,Tan A.H.2

Affiliation:

1. Asia University

2. Chien-Hsin University

Abstract

A nanoscale polish process with improved desired characteristics of low roughness and low scratch counts has been developed using a novel polish tape and diamond abrasive on hard glass substrates. For an improved polishing performance with high removal rate properties and preventing scratches, a novel tape was developed having a nanofiber level, densified surface and a flatter surface by slenderizing the fiber and dispersing ultrafine fiber using an innovative technique. Using this novel polishing tape with a fiber size of 200nm, one can produce a 17% lower surface roughness (Ra) (from 1.05A to 0.87A) and a reduced polished surface scratch count of 53 reduced to 18. The novel nanocluster diamond abrasive is synthesized from carbon atoms of explosives created by detonation in a closed chamber under an oxygen leaked atmosphere ambient. Several crystals are bonded together by layers of non-diamond carbon and other elements, forming aggregates with a nanocluster structure. Using this novel nanocluster diamond along with an ultra-fine diamond mixture with a nominal size of 15nm, one is able to produce an improvement of a 48% lower surface roughness Ra (from 0.87A to 0.45A) and a lower polishing surface scratch count reduced from 18 to 7. Overall, these results indicate that a smoother and a reduced scratch polished substrate results in a significant improvement in disk defects and related magnetic performances.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3