Synthesis of Nano-Al with Fe2O3 Nanowires to Realize Core-Shell Composite Materials Arrays Based on Colloidal Templates

Author:

He Si Min1,Chen Jin1,Fang Kuang1,Qiao Zhi Qiang1,Li Jin Shan1

Affiliation:

1. China Academy of Engineering Physics

Abstract

Controlled composite materials arrays have been widely applied for their unique physical and chemical properties, with the aim of developing nanodevices functionality. Nanosphere lithography is a successful technique for fabricating highly ordered arrays of various materials. In this work, the polystyrene colloidal crystal template in large area on Si substrate was obtained via dipping method. The thickness of the single layer template fabricated can be precisely controlling the particle concentration and the film formation speed. The ordered arrays of Fe2O3 nanowires were obtained via convenient spin method on this template and heat treatment subsequently. Finally, the uniform Al/Fe2O3 arrays were produced by magnetron sputtering method. These periodic composite arrays cover large area substrates (of dimensions > 1 cm × 1 cm) and are uniform in terms of nanowire height and density. The arrays thickness and gaps between nanowires are easily controlled by either the diameter of colloidal crystal or the parameters of magnetron sputtering.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3