Bi-Crystal Compensation Method for the Over-Response of Solid-State Dosimetry

Author:

Wang Ruo Xi1,Pittet Patrick1,Ribouton Julien2,Lu Guo Neng1,Galvan Jean Marc1,Jalade Patrice2,Balosso Jacques3,Ahnesjö Anders4

Affiliation:

1. Institut des Nanotechnologies de Lyon

2. Hôpital Lyon Sud

3. Centre Hospitalier Universitaire de Grenoble

4. Uppsala University

Abstract

Solid-state dosimetry employs highly sensitive semiconductors such as Gallium Nitride (GaN) and Silicon (Si), but they have a common drawback of over response compared to tissues for low-energy scattered photons, which induces inacceptable errors for radiotherapy application. To tackle this issue, we propose a compensation method consisting in using two different materials of dosimetric interest with different atomic numbers. Their responses are denoted as SC1 and SC2. The response ratio SC1/water as a function of the ratio SC1/SC2 exhibits a monotonic curve that can serve as reference to compensate the over-response of SC1. To validate this method, we have studied the dosimetric response of GaN (0.1 mm3) and Si crystals (2.5 mm3) by simulations, using a validated model based on the general cavity theory in a homogeneous water phantom. The dosimetric response of GaN and Si calculated using the model has errors within 2.5% compared to measured data. The local fluence spectra have been obtained by convolution of pencil beam kernel built by Monte Carlo simulations for different clinical irradiation conditions with field size (from 5×5 cm2up to 20×20 cm2) at depth in the phantom (from 2 cm to 25 cm). The obtained results confirm a monotone relationship between GaN/water dose ratio and GaN/Si dose ratio. The reference curve is independent of irradiation conditions (field size, dosimeter position...), and allows determination of compensation value by identification.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3