On-Site Pull-Out Tests of Steel Anchor Spikes Applied to Brickwork Masonry

Author:

Panizza Matteo1,Girardello Paolo1,Garbin Enrico1,Valluzzi Maria Rosa1,Cardani Giuliana2,Dalla Benetta Massimo1,Casadei Paolo3

Affiliation:

1. University of Padova

2. Politecnico di Milano

3. KERAKOLL S.p.A

Abstract

Externally Bonded (EB) composite materials are becoming a widespread solution for strengthening interventions on masonry buildings, even Cultural Heritage structures, due to several positive aspects mainly related to their high strength-to-weight ratio. In recent years, beside common epoxy-based Fibre-Reinforced Polymers (FRP), steel-based composites have been proposed: they are composed by unidirectional high-strength steel cords that can be coupled to either organic (Steel Reinforced Polymers, SRP) or inorganic (Steel Reinforced Grouts, SRG) matrices, in relation to their optimized spacing. The bond behaviour of all these EB composites has a strong influence over the effectiveness of interventions, since the detachment of reinforcements from the substrate generally represents the weaker failure mechanism. In order to improve this aspect, several anchorage devices have been proposed, being spikes, among them, one of the most suitable for masonry supports. Spikes are made of a bundle of fibres partly in the form of a bar, to be inserted and glued into a hole drilled in the substrate, and partly loose, to be spread and connected to reinforcement strips. Despite their importance also from a design point of view and considering the variety of shapes and materials, there are still few investigations in this field, being clear that both the spike-to-reinforcement and the spike-to-masonry connections need to be studied. Focused on the spike-to-masonry connection, this paper is aimed at investigating the performance of steel cord spikes applied to existing clay brick masonry, by means of overall 39 pull-out tests carried out taking into account the bonded length (equal to the hole depth), the type of embedding material and the number of steel cords forming the anchorage. The main results of this experimentation are herein presented and discussed.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3