Dry Forming of Aluminium Sheet Metal: Influence of Different Types of Forming Tool Microstructures on the Coefficient of Friction

Author:

Scholz Peter1,Börner Richard2,Kühn Ralf2,Müller Roland1,Schubert Andreas2

Affiliation:

1. Fraunhofer Institute for Machine Tools and Forming Technology

2. Technische Universität Chemnitz

Abstract

In the sheet metal forming industry lubricants are applied in forming processes to expand the technological boundaries by reducing friction and wear. The friction between tool and sheet metal is crucial to the deep drawing process. Due to economic and ecological reasons the aim of the manufacturers is to reduce or even avoid the use of lubricants. Consequently, this approach enables both a shortening of the process chains and an essential saving of resources. The advantages of structured forming tools in lubricated processes concerning the reduction of the coefficient of friction by the appearance of lubricating micro pockets are well-known. However, without using any lubricant this effect does not work. In this case the contact area is reduced by structuring the forming tool which affects the tribological system.In this paper the influence of microstructures with different geometries and surface treatments (uncoated / a-C:H:Si-coating) on the coefficient of friction in dry metal forming of the alloy AA5182 is compared to the frictional behaviour of unstructured forming tools using lubricant as reference. Before coating, the forming tools are machined by milling to generate tribologically effective microstructures. With the use of a strip drawing plant the effects of different surface microstructures and materials on the coefficient of friction are investigated.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3