Modelling of Laser Welding Process on Thermoplastic Composites

Author:

Cosson Benoit1

Affiliation:

1. Ecole des Mines de Douai

Abstract

Thermoplastics composites for structural applications are under growing development from the aerospace (carbon fibers with PEI, PPS or PEEK matrices mainly) to the automotive industry (glass and carbon fibers with PP, PA). The plastic deformation they can provide and the assembly facilities through welding techniques are well appreciated. Among the available welding technics, laser offers the possibility to assemble materials in a precise and localized manner and can be easily automated. However, due to the presence of continuous fibers at a high fiber volume fraction, propagation of the laser energy through the composite that present local variation of fiber volume fraction is not as straight forward as in a homogeneous material. Modelling of the laser welding of a thermoplastic/continuous glass fiber is considered here. The study takes into account the microstructure of the composite in order to evaluate changes in local energy absorption and diffusion directly linked with the thickness. Modelling of the welding process is developed from the representation of the moving laser beam. The beam propagation through the composite thickness is considered thanks to the ray tracing method. The proposed method is able to optimise the welding process in function of the microstructure and the material properties of the welded parts.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Effect of fibre orientation on the light scattering during laser transmission welding;Journal of Manufacturing Processes;2023-01

2. Joining and Complex;Journal of the Japan Society for Technology of Plasticity;2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3