Prediction of Life of Compound Die Using Artificial Neural Network (ANN)

Author:

Kashid Sachin1,Kumar Shailendra2

Affiliation:

1. S. V. National Institute of Technology

2. Sardar Vallabhbhai National Institute of Technology

Abstract

Prediction of life of compound die is an important activity usually carried out by highly experienced die designers in sheet metal industries. In this paper, research work involved in the prediction of life of compound die using artificial neural network (ANN) is presented. The parameters affecting life of compound die are investigated through FEM analysis and the critical simulation values are determined. Thereafter, an ANN model is developed using MATLAB. This ANN model is trained from FEM simulation results. The proposed ANN model is tested successfully on different compound dies designed for manufacturing sheet metal parts. A sample run of the proposed ANN model is also demonstrated in this paper.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Programmatic Approach for the Prediction of Service Life of Deep Drawing Die Using ANN;Advances in Applied Mechanical Engineering;2020

2. Prediction of Life of Compound Die Punch Using Machine Learning;2019 International Conference on Computational Intelligence and Knowledge Economy (ICCIKE);2019-12

3. Optimization of compound die piercing punches and double cutting process parameters using finite element analysis;Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture;2019-06-10

4. Comparison of Artificial Neural Network and Adaptive Neuro Fuzzy Inference Systems for Predicting the Life of Blanking Punch;Advanced Structured Materials;2018-12-31

5. Prediction of Life of Compound Die Using Artificial Neural Network;AI Applications in Sheet Metal Forming;2016-10-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3