Reactivity of Carbonates in Superheated Steam under Atmospheric Pressure

Author:

Asano Kohei1,Yamaguchi Yuki1,Fujimoto Kenjiro1,Ito Shigeru1

Affiliation:

1. Tokyo University of Science

Abstract

The effect of superheated steam on the decomposition of CaCO3 and MnCO3 and on the solid state reactions of ZnCO3-FeOOH and MnCO3-CaCO3 was investigated. A newly developed apparatus for the experiments under 1 atm of pure water vapor was used. CaCO3 decomposed at 800 oC in the superheated steam to form the single phase of CaO. On the other hand, the decomposition was uncompleted in air. CaCO3 transformed into CaO via Ca (OH)2 in superheated steam. During the transformation of carbonate into hydroxide, the crystal lattice is temporarily disordered to make it active, leading lower decomposition temperature of CaCO3. MnCO3 decomposed to form γ-Mn2O3 at above 1000 oC in air, whereas γ-Mn2O3 was obtained at 800 oC in the superheated steam. The solid state reaction in the steam was suppressed for the mixture of ZnCO3 and FeOOH. This seemed to be due to the large difference in decomposition temperature between ZnCO3 and FeOOH. MnCO3 reacted with CaCO3 to form CaMn2O4 at 800 oC in the superheated steam. However, a higher temperature of 1000 oC was required to cause the reaction in air. The low-temperature transformation of MnCO3 and CaCO3 in the superheated steam would affect the reaction. It was concluded that the reactivity of carbonate in super heated steam was promoted by the Hedvall effect, which was caused by the formation of intermediate phase such as hydroxide.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3