Affiliation:
1. University of Kaiserslautern
Abstract
Low-pressure steam turbine blades undergo VHCF-loadings induced by inhomogenous flow behind the vanes resulting in excitation frequencies of ≈ 2 kHz for rotational speeds of 50 Hz and a typical number of stator vanes of ≈ 60. The VHCF loading is superimposed by considerable mean stresses caused by centrifugal forces. In the present study, the VHCF-behavior of the ferritic-martensitic turbine blade steel X10CrNiMoV12-2-2 is investigated using an ultrasonic fatigue testing system up to cycle numbers of 5∙109 at stress ratios from R = -1 up to 0.7, i.e. up to very high mean stresses. Generally, crack initiation changes from the surface to internal inclusions at fatigue lives around 4∙107. The transition between fatigue failure and run-outs is shifted to higher lifetime with increasing R, and fine grained areas (FGAs) at the crack initiation sites only occur at R < -0.1. However, the fracture mechanics approach proposed by Murakami consistently describes the lifetime behavior for all load ratios over 4 decades of lifetime. At R up from 0.5 considerable cyclic creep occurs, even for lifetimes above 108 cycles, resulting in cyclic hardening which was proved by microhardness measurements at longitudinal sections. This effect at least partially explains the high maximum stresses close to the tensile strength of the material occurring in the VHCF regime at load ratios ≥ 0.5.
Publisher
Trans Tech Publications, Ltd.
Subject
Mechanical Engineering,Mechanics of Materials,General Materials Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献