An Analysis of the Microstructure and Mechanical Properties of Rapidly Solidified Al-1Fe-1Ni-5Mg Alloy

Author:

Kula Anna1,Blaz Ludwik1,Sugamata Makoto2

Affiliation:

1. AGH-University of Science and Technology

2. Nihon University

Abstract

Experiments on Al-1Fe-1Ni-5Mg alloy were performed to determine the effect of rapid solidification (RS) on the material strengthening, which result from the refining of the grain size and intermetallic compounds. Additionally, an enhancement of the material strengthening due to magnesium addition was also observed. RS procedure was performed using spray deposition of the molten alloy on the rotating water-cooled copper roll. As a result, highly refined structure of rapidly solidified flakes was obtained. Using common powder metallurgy (PM) techniques, i.e. cold pressing, vacuum degassing and hot extrusion, as received RS-flakes were consolidated to the bulk PM materials. For comparison purposes, the conventionally cast and hot extruded Al-1Fe-1Ni-5Mg alloy was studied as well. RS process combined with hot pressing and extrusion procedure was found to be very effective method for the manufacture of fine grained material and effective refinement of intermetallic compounds. However some inhomogenity of particles distribution was observed, which was ascribed to varied cooling rate dependent on the particular spray-drop size. Mechanical properties of as-extruded material were examined using compression test at 293K – 873K. High strength and ductility of as-extruded RS material with respect to conventionally produced alloy were observed. However, the effect of enhanced mechanical properties of RS material is observed only at low deformation temperatures. It was found that increasing deformation temperature above 400K results in negligible hardening of RS samples if compared to conventionally produced material.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3