Estimation of Depth of Concrete Column Members Using Impact Echo Method

Author:

Kim Seung Hun1,Hong Seong Uk1,Lee Yong Taeg1,Lee Seung Ho1

Affiliation:

1. Hanbat National University

Abstract

In order to maintain the existing concrete structures in a safe and usable state, an overall maintenance management is necessary regarding structure aging from quality management of new construction. Thus, non-destructive testing is needed to estimate the structure damage, defect, or proper construction without damaging the structure. In U.S., there is a standard for non-destructive test (ACI 228.2R-98), and also in Japan, the non-destructive test method and compressive strength estimation manual was prepared by the Architectural Institute of Japan in 1983, and there are active researches in the ground field, but it lacks verification in architecture field. Thus, in this study, a technique that can estimate the depth of concrete column member using the Impact Echo method which is one of the non-destructive test methods shall be reviewed and evaluated for applicability to the architecture field. The specimen was mixed with design strength of 30MPa. The equipment used in testing is Freedom Date Pc Platform Win.TFS 2.5.2 by company Olson of U.S., and the experiment involved leveling the top surface of the concrete member, installing the equipment and applying impact 9 times, and taking the average of the reverberation values obtained. The estimated average depth of concrete column member using Impact Echo method was 304mm for IEC-300, 398mm for IEC-400, and 484mm for IEC-500, and the relative error rate compared to the actual size was 1%~3%. Through this study, the applicability of estimation of depth in concrete column members using impact echo method could be confirmed.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Reference7 articles.

1. Y. S. Cho, F. B. Lin, Nondestructive evaluation of in-place cement mortar compressive strength using spectral analysis of surface waves, Construction and Building Materials 19 (2005) p, pp.738-745.

2. Ravat, C., Joubert, P. -Y. and Le Bihan, Y : Non-Destructive Evaluation of Small Defects Using an Eddy Current Microcoil Sensor Array, Sensor Letters, Volume 7, Number 3, June 2009 , pp.400-405(6).

3. F. Ansari, Nondestructive Test Methods for Evaluation of Concrete in Structures, ACI 228. 2R-98.

4. Nondestructive Test Methods for Evaluation of Concrete in Structures, American Concrete Institute Report ACI 228. 2R-98, Farmington Hills, Michigan (1998).

5. M. Sansalone and Carino. N. J., Impact Echo Method : Detection Honeycombing, the depth of surface-opening Cracks, and Ungrouted Ducks, Concrete International : Design & Construction, V. 10, No. 4, Apr. 1988, p.38~46.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3