Zinc Oxide Doped Red Sea Egyptian Clay as a Varistor

Author:

El-Hofy M.1,Dawoud M.1,Elkhatib M.1,Aziz A. Abdel2

Affiliation:

1. Menoufia University

2. National Institute for Standards NIS

Abstract

Clay consists of about 50% SiO2 + 25% Al2O3 plus some other oxides with low abundance ratio like CaO, TiO2, Fe2O3, MgO and Mn2O3. Burning the clay at 700°C removes out the organic compounds and the mentioned oxides only remain. Our aim is to dope ZnO by the remaining oxides for varistors fabrication. Six types of clay were collected from Egyptian Red Sea Coast mines, after burning for 2 hrs the remaining oxides were mixed and ball milled with ZnO for 10 hrs according to the formula (100-Xn) ZnO +Xn, where n is the clay type and X is the ratio of the clay in grams, X takes the values 0.525 in 15 steps. Samples were pressed and sintered at three different temperatures (Tsin) 1200°C, 1300°C and 1400°C for 1 hr, and then studied via XRD, SEM, EDAX, J-E and C-V measurements. The obtained results were discussed in terms of the microstructure of the samples and the formation of Schottky barriers. Barrier height Ф, width W, interface state density Ns and donor state density Nd were calculated for the samples with highest nonlinearity α. It was found that the breakdown electric field Eo is related exponentially with the ratio of Zinc silicate phase whereas α scales with ratio of ZnO phase and the later increases linearly with Tsin. The electrical characteristics of the most promising sample were compared with those of ZnO samples doped pure SiO2 and Al2O3 obtained at the same preparation condition. This sample is comparable with the Japanese commercial varistor 5N220k Dc JVR.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Reference5 articles.

1. R.L. Bates and J.A. Jackson, Glossary of geology, second ed., American Geological Institute, Falls Church, Virginia, (1980).

2. P.W. Scott, C.M. Bristow, Industrial Minerals and Extractive Industry Geology, The Geological Society of London, London, (2002).

3. M. El-Hofy, Defect and Diffusion Forum 242-244 (2005) 107-114.

4. S. A. Pianaro, P.R. Bueno, P. Olivi, E. Longo and J. A. Varela, Mater Sci. 16 (1997) 634-638.

5. M. Orvatinia, S. Gandomakr, Sensor Letters, 1-2 (2012) 104-111.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3