Inverse Problems Using Neural Networks for Cracks Characterization in Materials

Author:

Harzallah Salaheddine1,Chabaat Mohamed1,Benissad Sekoura1

Affiliation:

1. University of Sciences and Technology Houari Boumediene

Abstract

Inverse eddy current problem using Artificial Neural Networks (ANN) approach for the localization and the classification shape of defects is considered. The task of reconstructing the cracks and damage in the plate profile of an inspected specimen in order to estimate its material properties can be described in this research work. This is accomplished by inverting eddy current probe impedance measurements that are recorded as a function of probe position, excitation frequency or both. In eddy current nondestructive evaluation, this is widely recognized as a complex theoretical problem whose solution is likely to have a significant impact on the characterization of cracks in materials .

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Reference9 articles.

1. F. Zaoui, C. Marchand, A. Razek, Localization and Shape Classification of Defects using the Finite Element Method and the Neural Networks, Laboratoire de Génie Electrique de Paris (LGEP).

2. S.R.H. Hoole, M.C. Harvey, C.A. Claremont, Artificial neural networks in the solution of inverse electromagnetic field problems. IEEE Trans Magnetic 29(2) (1993) 1931-(1934).

3. S. Haykin, Neural Networks; A Comprehensive Foundation, Prentice Hall, (1999).

4. A. Ayad, F. Benhamida, A. Bendaoud, Y. L. Bihan, M. Bensetti; Solution of Inverse Problems in Electromagnetic NDT Using Neural Networks, Przegląd Elektrotechniczny (Electrical Review), ISSN 0033-2097, R. 87 NR 9a/2011, Colloque National sur l'Inductique : Application de l'Induction Electromagnétique.

5. M. Wrzuszczak, J. Wrzuszczak; Eddy current flaw detection with neural network Applications Measurement 38 (2005) 132–136.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3