Interior-Induced Fracture Mechanism of High Cleanliness Spring Steel (JIS SWOSC-V) in Very High Cycle Regime

Author:

Miura Taku1,Sakakibara Takayuki2,Kuno Takanori2,Ueno Akira1,Kikuchi Shoichi3,Sakai Tatsuo1

Affiliation:

1. Ritsumeikan University

2. Chuo Spring Co., Ltd.

3. Kobe University

Abstract

In order to investigate the interior-induced fatigue crack propagation behavior of high cleanliness valve spring steel (JIS SWOSC-V), rotating bending fatigue tests were performed for various kinds of specimens with different hardness or surface finishings. The harder specimen with higher compressive residual stress showed longer fatigue life. The electrochemical polished specimen pre-treated with shot peening showed almost same fatigue life as the shot-peened specimen in spite of the difference in surface roughness. After fatigue tests, fracture surfaces were observed using a scanning electron microscope (SEM) to evaluate the fatigue fracture mechanism. Most specimens failed in surface-induced fracture mode due to high cleanliness; however, some specimens failed in interior-induced fracture mode in the very high cycle regime. Although non-metallic inclusions were not observed at interior fatigue crack initiation sites, 2 types of significant microstructures (with smooth surface or granular surface) were observed. EBSD analysis, profile analysis and computational simulation using a fracture surface topographic analysis (FRASTA) method were performed to investigate the mechanism of the interior-induced fatigue fracture caused by the microstructure at defect without any inclusion.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3