Fabrication and Characterization of Pineapple Fiber-Reinforced Polypropylene Based Composites

Author:

Hoque Mohammad Bellal1,Hossain M. Sahadat2,Nahid Abdul M.1,Bari Solaiman1,Khan Ruhul A.2

Affiliation:

1. World University of Bangladesh

2. Bangladesh Atomic Energy Commission

Abstract

Pineapple Leaf Fiber (PALF)-reinforced polypropylene (PP) based composites were prepared successfully by conventional compression molding technique. Different percentages (25,30,35, 40 and 405% by weight) of fiber were used to prepare composites. Tensile Strength (TS), Tensile Modulus (TM), Elongation at Break (Eb %), Bending Strength (BS), Bending Modulus (BM) and Impact Strength (IS) were evaluated. The 45 wt% PALF/PP composite exhibited an increase of 132% TS, 412% TM, 155% BS, 265% BM, and 140% IS with respect to the matrix material (PP). Fourier Transform Infrared (FTIR) Spectroscopy was employed for functional group analysis of PALF/PP composites. For all percentages of fiber, the composites demonstrated lower water uptake. The fabricated composites were immersed in alkali solution (Sodium hydroxide solution, 3%, 5% and 7% by weight) for 60 min and showed low TS, TM and Eb% compared to control composites.

Publisher

Trans Tech Publications, Ltd.

Subject

General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3