Experiments and Numerical Simulations of Interlocked Materials

Author:

Brugger Charles1,Bréchet Yves2,Fivel Marc3

Affiliation:

1. Université de Liège

2. SIMAP, Institut Nationale Polytechnique de Grenoble

3. Domaine Universitaire Grenoble

Abstract

Interlocked materials are new examples of “hybrid materials”, mixing materials and structures at a millimetric scale. They consist of periodic assemblies of elementary blocks with specific shapes, maintained in contact by compressive boundary conditions. These “pre-fragmented materials” can simultaneously fulfil antagonistic properties such as high strength together with good damage tolerance. We performed indentation tests on two different structures: (i) an assembly of osteomorphic ice blocks and (ii) an assembly of plaster made cubes. The tests being performed up to the failure, it is found that these structures dissipate much more mechanical energy than similar monolithic plates and preserve their integrity up to much larger deformation. A numerical modelling is then developed in order to reproduce this behaviour. Using finite elements, we simulated the friction contact between two elastic cubes or blocks, for a given lateral load and friction coefficient. The outputs are then introduced as local contact rules in a “Discrete Elements code” specially developed for this study. The discrete code is then used to model the elastic and damage behaviour of assemblies of cubes or osteomorphic blocks. The comparison with experimental results is satisfactory. Finally, the code is used to model larger assemblies of interlocked structures for which the force path is analysed.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3