Artificial Neural Network – An Application to Predict the Fatigue Crack Growth Rate of HSLA Steel and Copper

Author:

Mishra Archana1,Mishra Antaryami1

Affiliation:

1. Indira Gandhi Institute of Technology

Abstract

In the present work , a prediction method has been used to describe the life of High Speed Low Alloy steel (HSLA Steel ) and Copper under constant load ratio by using Artificial Neural Network (ANN). Therefore a methodology has been developed to determine the fatigue crack growth rate (da/dN) of HSLA steel and Copper under constant amplitude loading at different load ratios i.e. R = 0, 0.2, 0.4, 0.5, 0.6 and 0.8 by adopting an exponential model to raw experimental a – N data. A soft-computing technique, i.e. Artificial Neural Network (ANN) has been formulated and implemented to estimate the fatigue life at R = 0.5. A comparison has been made with experimental data obtained by earlier researchers and found to be within limits and in good agreement. It is observed that percentage deviations from the experimental values for HSLA steel and Copper are 4.14 and 4.574 respectively. The error values are well within limits of -0.06% and -0.09% for both the materials.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3