Application of DG-RBFNN in Power Flow Calculation of Distribution Network with DG

Author:

Zhao Qing Qi1,Chen Xue2,Yang Yi3,Xue Ji Guang4

Affiliation:

1. Liaoning Electric Power CO., LTD

2. School of Information Science and Engineering

3. Liaoning Electric Power

4. Shenyang Agriculture University

Abstract

With the injection of distributed generation (DG) into distribution network, complexity and uncertainty of power flow in distribution network follow. In order to calculate power flow more simply and accurately, considering the characteristics of distribution network with DG and the flexible applicability of RBF neural network, a special adaptive dynamic clustering RBFNN (DG-RBFNN) method, which clusters the input samples only according to the parameters associated with DG, has been used in this paper. Therefore, the results are more approximate to the real condition and the calculation process is simpler compared with conventional back/forward (B/F) method meanwhile the calculation scale is also relatively smaller compared with ordinary adaptive dynamic clustering RBFNN. Finally, according to a 21-bus 66 kV distribution network of Shenyang, Liaoning province simulation experiment, the availability of DG-RBFNN method is proved.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3