Study of Preparation of Nano NdxCo2-xZr2O7 and its Catalytic Properties on Ammonium Perchlorate Thermal Decomposition

Author:

Bai Yun Shan1,Zeng Jian Ping1,Lu Lu De2,Bao Jian Chun2

Affiliation:

1. Yancheng Institute of Technology

2. Nanjing University of Science and Technology

Abstract

Cubic pyrochlore type NdxCo2-xZr2O7nano-crystals were prepared by salt-assistant glycine solution combustion method (SGCM), with neodymium nitrate, cobalt nitrate and zirconium nitrate as raw materials, glycine as the incendiary agent, and KCl as a reaction inert salt. The NdxCo2-xZr2O7nano-crystals were characterized by means of XRD (X-ray powder diffraction), FT-IR (Fourier trans- form-infrared spectroscopy), Raman spectroscopy, TEM (Transmission electron microscope) and HRTEM (High resolution transmission electron microscopy). The results showed that neodymium ions were partially substituted by cobalt ions, while maintaining the original pyrochlore structure. The nano particles obtained had a perfect crystal structure, good dispersion, and the size was about 31nm. For Nd1.9Co0.1Zr2O7nanocrystals, the four strong diffraction peaks were at 2θ=29.18°, 33.80°, 48.49° and 57.53°. The corresponding crystal plane distances calculated by Bragg equation λ=2dSinθ were 0.306, 0.265, 0.188 and 0.160 nm. Study the catalyst effect of NdxCo2-xZr2O7on the thermal decomposition of ammonium perchlorate (AP) using DSC (Differential scanning calorimetry). The results showed that nano NdxCo2-xZr2O7had high catalytic activity during on the thermal decomposition of ammonium perchlorate. With 2% more nano NdxCo2-xZr2O7, the peak temperature of AP thermal decomposition reaction dropped by nearly 88°C. The apparent decomposition reaction heat increased from 655J•g-1to 1073J•g-1. The results showed that the catalytic effect of thermal decomposition of AP with nano cobalt-doped zirconium acid neodymium is better than the single component of nano-metal oxides and undoped zirconate neodymium nanocrystals.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3