Dynamic Stress and Deformation of Non-Homogeneous Poroelastic Moderately Thick Shells of Revolution Saturated in Viscous Fluid

Author:

Gonda Takeshi1,Otsuka Shigeru1,Yakabe Masaki1,Tao Katsumi2

Affiliation:

1. Yonago National College of Technology

2. Suzuka National College of Technology

Abstract

This paper describes an analytical formulation and a numerical solution of the elastic dynamic problems of non-homogeneous poroelastic moderately thick shells of revolution saturated in viscous fluid. The porosity and porous diameter of the material are assumed to be continuously varied along the shell thickness. The equations of motion and the relations between strains and displacements are derived from the Reissner-Naghdi shell theory. As the constitutive relations, the consolidation theory of Biot for models of fluid-solid mixtures is employed. The flow of viscous fluid through a porous elastic solid is governed by Darcy's law. In the numerical analysis of the fundamental equations an usual finite difference form is employed for the spatial derivatives and the inertia terms are treated with the backward difference formula proposed by Houbolt. As a numerical example, the simply supported cylindrical shell under a semi-sinusoidal internal load with respect to time is analyzed. Numerical computations are carried out by changing porosity and mean void radius along the shell thickness, and the variations of pore pressure, displacements and internal forces with time are analyzed.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3