Support Vector Regression Based Nonlinear Model Reference Adaptive Control

Author:

Ye Xin Xin1,Lu Jian Gang1,Yang Qin Min1

Affiliation:

1. Zhejiang University

Abstract

Model reference adaptive control (MRAC) is widely used in linear system control areas, and Neural Networks (NN) is often used to extend MRAC to nonlinear areas. However, this kind of solution inherits some drawbacks of NN, including slow learning speed, weak generalization ability, local minima tendency, etc. Given these drawbacks, this paper attempts to use support vector regression (SVR) as a substitute of NN. In this approach, SVR is employed to compensate the nonlinear part of the plant. A stable controller-parameter adjustment mechanism is constructed by using the practical stability theory. Simulation results show that the proposed approach could reach desired performance.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

Reference18 articles.

1. Hang C C, Parks P C. Comparative Studies of Mode Reference Adaptive Control System[J]. IEEE Trans, Automatic Control, 1973, 18 (5): 419-428.

2. Lu J, Phuah J, Yahagi T. A Method of Mode Reference Adaptive Control for MIMO Nonlinear System Using Neural Networks[J]. IEICE Trans, Fundamentals, 2001, 84(8): 1933-(1941).

3. Rossomando F G, Soria C, Patino D, Carelli R. Model Reference Adaptive Control for Mobile Robots in Trajectory Tracking using Radial Basis Function Neural Networks[J]. Latin American Applied Research, 2011, 41(8 ): 177-182.

4. Elbuluk M E, Tong L, Husain I. Neural Network based Model Reference Adaptive Systems for High Performance Motor Drives and Motion Controls[J]. IEEE Trans, Industry Applications, 2000, 38(3): 879-886.

5. Tanaka Kanya, Yoshimura Yoshie. MRAC Combined Neural Networks for Ultra-Sonic Motor[J]. JSME International Journal Series-C, 2006, 49(4): 1084-1090.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3