Hydrophilic and Photocatalytic Performances of Y-Doped Titanium Dioxide Thin Films

Author:

Du Jun1,Yu Yan Bin1,Huang Jing Jing1,Fu Hua Qiang1,Li Bu Hui1,Wu Qi1,Xiao Zhao Qiang1,Liu Jiao1,Peng Hai Long1,Luo Mei1,Zheng Dian Mo1,Zou Jian Guo1

Affiliation:

1. Nanchang University

Abstract

Pure and Y-doped TiO2 thin films are prepared on glass by sol-gel method. Tetrabutyl titanate was used as Ti precursors. The chemical composition, structure and properties of TiO2 thin films are characterized by XRD, FT-IR, UV-Vis and Optical Contact Angle Measuring Instrument. Their photocatalytic performances were studied in detail by the methylene blue degradation model. The results show that the crystalline phase of Y2Ti2O7 is formed and the phase transformation from anatase to rutile is restrained when Y is doped in the TiO2 thin films. However, with the continuous increase in calcination temperature, its photocatalytic activity decreases, because the anatase will transform to the rutile. The proper amount of Y doping will cause the lattice to expand, the new defects will form and the smaller band-gap energy will be revealed. Thus, the absorption ability toward the ultraviolet can be improved, the redshift of the absorption band can also be found. As the results of it, the hydrophilicity and photocatalytic efficiency can improved. Furthermore, the photocatalytic activity increases with the hydrophilicity. When the calcination temperature of thin films is 450oC and the Y-doping is 0.3%, the main crystalline phase of the samples is the anatase, the contact angle is only 13.7o and the degradation ratio of methylene blue reached 98.84%.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3