The Effect of Ag Concentration of Core-Shell Fe3O4@Ag Nanoparticles for Sensitivity Enhancement of Surface Plasmon Resonance (SPR) - Based Biosensor

Author:

Juharni Juharni1,Maulana Ilyas1,Suharyadi Edi1,Kato Takeshi2,Iwata Satoshi2

Affiliation:

1. Universitas Gadjah Mada (UGM) Yogyakarta

2. Nagoya University

Abstract

The objective of this research is to advance the affectability of Surface Plasmon Resonance (SPR) biosensor utilizing core-shell Fe3O4@Ag nanoparticles (Fe3O4@Ag NPs) with a variation of Ag concentration (20, 40, 60, 80, 100) mM. Fe3O4@Ag NPs were synthesized by the aqueous solution method. The characterization by utilizing X-ray Diffractometer (XRD) depicts that the crystal structure of Fe3O4 compares to the cubic inverse spinel structure and based on Transmission Electron Microscopy (TEM) estimation, the particle size average of Fe3O4@Ag NPs is 14.45 nm. The magnetic properties of Fe3O4@Ag NPs were evaluated by Vibrating Sample Magnetometer (VSM), the result appears that the more concentration of Ag increases, the more remanent magnetization (Mr), saturation magnetization (Ms), and coercitivity field (Hc) diminishes. In this research, a Fe3O4@Ag NPs, a spherical nanoparticle consisting of a spherical Fe3O4 core covered by an Ag shell, was used as an active material to enhance the signal detection of SPR, with a wavelength of 632.8 nm in the Kretschmann configuration. The system consists of a four-layer material, i.e., prism/Au film/ Fe3O4@Ag NPs. The results show that the SPR angle shifted to the larger angle of incident light by using Fe3O4@Ag NPs. However, the effect of Ag concentration appears that the more concentration of Ag extends, the lower angle of SPR shifts. The addition of a core-shell in the conventional SPR-based biosensor leads to the enhancement of the SPR biosensor sensitivity if the fractional volume of the core-shell is large.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3