Phase Inversion-Induced Rosin In Situ Forming Matrix Using Various Organic Biocompatible Solvents for Periodontitis Treatment

Author:

Lertsuphotvanit Nutdanai1,Mahadlek Jongjan1,Tuntarawongsa Sarun1,Phaechamud Thawatchai1

Affiliation:

1. Silpakorn University

Abstract

In situ forming matrix (ISM) is an injectable drug delivery system containing a drug-loaded polymeric solution. It was applied for local drug administration such as into a periodontal pocket for periodontitis treatment with an antimicrobial agent. ISM can transform with phase inversion into the solid-like matrix after contact an aqueous environment by solvent exchange mechanism. This study aims to develop ISM which various concentrations of rosin (R) as matrix former dissolved in organic biocompatible and biodegradable solvents such as N-methyl-2-pyrrolidone, dimethyl sulfoxide and 2-pyrrolidone. Physicochemical characterization and matrix formation behavior owing to phase inversion of R ISM were evaluated including pH, density, viscosity, contact angles, surface tension, expelling force through a syringe, matrix formation behavior and morphological change. The density of all R ISM exhibited in the range of 1.03-1.11 g/cm3 and contact angles (9.04-44.13°) indicated a good wetting property. Higher R concentration decreased pH of ISM owing to increased amount of abietic and pimaric acid from R while the viscosity, contact angles and force for expelling a syringe were increased. The viscosity of R ISM in dimethyl sulfoxide was less than that in 2-pyrrolidone; thus, ISM using dimethyl sulfoxide as a solvent exhibited good injectability. ISM comprising R concentration > 30%w/w promoted a faster matrix growth in which the amount of occurred R matrix was enhanced with time and the rate of matrix formation was lower with time. Doxycycline Hyclate (Dx)-loaded 40%w/w ISM in dimethyl sulfoxide (Dx-DR) had pH of 3.70, density of 1.1084 ± 0.0005 g/ml, viscosity of 35.72 ± 0.00 cPs, contact angles of 26.87 ± 2.40°, surface tension of 37.11 ± 0.11 mN/m and expelling force of 23.98 ± 0.18 N. It showed the sustainable Dx release in simulated crevicular fluid and the efficient antimicrobial activity against Staphylococcus aureus and Porphyromonas gingivalis. Thus, this phase inversion induced R ISM using dimethyl sulfoxide as a solvent showed potential as an antimicrobial agent-loaded drug delivery system for periodontitis treatment.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3