Theoretical Study of the Electronic Structure and Properties of Alternating Donor-Acceptor Couples of Carbazole-Based Compounds for Advanced Organic Light-Emitting Diodes (OLED)

Author:

Makjan Suppamat1,Promkatkaew Malinee2,Hannongbua Supa3ORCID,Boonsri Pornthip1ORCID

Affiliation:

1. Srinakharinwirot University

2. Kasetsart University Sriracha Campus

3. Kasetsart University

Abstract

Generally, it is difficult to generate a high-performance pure blue emission organic light-emitting diode (OLED). That is because the intrinsically wide band-gap makes it hard to inject charges into the emitting layer in such devices. To solve the problem, carbazole derivatives have been widely used because they have more thermal stability, a good hole transporting property, more electron rich (p-type) material, and higher photoconductivity. In the present work, novel copolymers containing donor-acceptor-acceptor-donor (D-A-A-D) blue compounds used for OLEDs were investigated. The theory of the geometrical and electronic properties of N-ethylcarbazole (ECz) as donor molecule (D) coupled to a series of 6 acceptor molecules (A) for advanced OLEDs were investigated. The acceptors were thiazole (TZ), thiadiazole (TD), thienopyrazine (TPZ), thienothiadiazole (TTD), benzothiadiazole (BTD), and thiadiazolothienopyrazine (TDTP). The ground state structure of the copolymers were studied using Density Functional Theory (DFT) at B3LYP/6-31G(d) level. Molecular orbital analysis study indicated 3 investigated copolymers (ECz-diTZ-ECz, ECz-diTD-ECz, ECz-diBTD-ECz) have efficient bipolar charge transport properties for both electron and hole injection to the TiO2 conduction band (4.8 eV). In addition, the excited states electronic properties were calculated using Time-Dependent Density Functional Theory (TD-DFT) at the same level. Among these investigated copolymer ECz-diTZ-ECz and ECz-diTD-ECz showed the maximum absorption wavelengths (λabs) with blue emitting at 429 and 431 nm, respectively. The results suggested that selected D-A-A-D copolymers can improve the electron- and hole- transporting abilities of the devices. Therefore, the designed copolymers would be a promising material for future development of light-emitting diodes, electrochromic windows, photovoltaic cells, and photorefractive materials.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3