WO3/Nb2O5 Nanoparticles-Decorated Hierarchical Porous ZnO Microspheres for Enhanced Photocatalytic Degradation of Palm Oil Mill Effluent and Simultaneous Production of Biogas

Author:

Sin Jin Chung1,Chin Ying Hui1,Lam Sze Mun1

Affiliation:

1. Universiti Tunku Abdul Rahman

Abstract

Conventionally, palm oil mill effluent (POME) was treated using open ponding system, which nevertheless long retention times and large treatment areas were required. In this report, heterogeneous photocatalysis was used to degrade the POME and simultaneously assessed the biogas formation. Characterization of the chemically prepared hierarchical porous ZnO microspheres showed that wurtzite was the predominant crystalline phase with a band gap energy of 3.22 eV. Moreover, the as-prepared ZnO were assembled by large numbers of interleaving nanosheets and formed an open porous structure. Under UV irradiation, the as-prepared ZnO demonstrated photocatalytic property on POME degradation. The WO3 and Nb2O5 decorated ZnO photocatalysts (WO3/ZnO and Nb2O5/ZnO) with improved photocatalytic performances were also prepared using a simple and rapid way. Significantly, in the presence of WO3/ZnO and Nb2O5/ZnO composites, the degradation of POME achieved 68.3% and 91.7%, respectively after 240 min irradiation. Interestingly, the assessment of the biogas formation showed that the photocatalytic reactions over Nb2O5/ZnO and WO3/ZnO composites generated higher amount of biogas products (CH4 + CO2) compared to that of ZnO. The photocatalytic enhancement was attributed to the high separation efficiency of photogenerated electron–hole pairs based on the formation of heterojunction structures between the WO3/Nb2O5 and ZnO. The observed findings also revealed that the photocatalytic technology using hierarchical WO3/ZnO and Nb2O5/ZnO composites had the potential to efficiently treat wastewater.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3