Manganese Sinter Production with Wood Biomass Application

Author:

Kieush Lina1,Boyko Maksym1,Koveria Andrii2,Yaholnyk Maksym1,Poliakova Natalia1

Affiliation:

1. National Metallurgical Academy of Ukraine

2. Dnipro University of Technology

Abstract

A large amount of finely dispersed manganese ore left after benefication operations or blown out from the furnaces is unsuitable for direct use in electric furnaces and blast furnaces, therefore it is necessary to granulate it in order to have the efficient use of its fine ore particles in metallurgy. To make our research more of practical use, we found it is reasonable not only work over manganese fines sintering but also to attempt mitigating the negative effect on the environment produced by the further sintering and apply the biofuel within the total fuel mass. Under laboratory conditions, the studies have been carried out with the objective to obtain manganese sinter, in which wood biomass is applied, namely initial and pre-pyrolyzed, at temperatures of 673, 873, 1073 and 1273 K. The amount of biofuel in the sinter blend was 25 wt.%. It has been established that the biomass use causes the decrease in the specific capacity of the sintering plant. However, for the efficient manganese ores sintering process, the biofuel of high pyrolysis temperature of 1273 K is required. To achieve the specific capacity and the yield to be as high as those when coke breeze is only used, the amount of the biofuel for manganese ore sintering should be less than 25 wt.% of the solid fuel. Additionally, it has been revealed that the further increase in the biofuel ratio in the total fuel amount is possible on condition that its reactivity is decreased, or larger particles of the biofuel are used.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3