Synthesis of Y2O3: Eu Nanosized Phosphor Using Hydrothermal Technique and Rapid Thermal Annealing (RTA)

Author:

Vlasenko Anna B.1,Bakhmetyev Vadim V.1

Affiliation:

1. St. Petersburg State Institute of Technology (Technical University)

Abstract

The application of special nanomaterials is promising for the development of new methods for the diagnostics and treatment of cancer. Photodynamic therapy (PDT) is a well-known and recognized method of cancer treatment. This type of therapy is less carcinogenic and mutagenic compared to radiation and chemotherapy, since the applied photosensitizers do not bind to DNA of the cells. However, currently this technique is only applicable to skin cancer, while its extension to the treatment of abdominal tumors requires the creation of pharmacological drugs for PDT, which along with a photosensitizer include a colloidal solution of nanosized luminescent phosphor emitting visible light with the required wavelength under the influence of infrared, X-ray or γ-radiation, which easily penetrates the body tissues. Since photosensitizers are already available as commercial products, the most important goal is the development of nanosized phosphors providing the required radiation convertion. In this study, the effects of hydrothermal synthesis, duration and the conditions of rapid thermal annealing (RTA) on Y2O3:Eu phosphor particle size were studied. The hydrothermal synthesis technique was carried out in two ways: chloride (precipitation from a chloride solution using NaOH and NH4OH precipitators) and acetate (decomposition of mixed acetate either without a dispersant at 230° C for 24 hours, or using PEG-200 and PEG-2000 as dispersants at 230 °C for 12 hours). The rapid thermal annealing was performed either at 600 °C for 20 minutes, or at 800 °C for 5 minutes. The developed synthetic approaches afforded Y2O3:Eu nanosized phosphor samples with the particle size not exceeding 200 nm.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3