CdS Nanostructured Thin Films Synthesized by Pulsed Laser Deposition for Solar Cell Technology

Author:

Abd Jinan A.1,Mohammed Wasan M.1,Al-Nafiey Amer1

Affiliation:

1. University of Babylon

Abstract

CdS thin films have been grown on glass substrate at 250o C employing pulsed laser deposition method. The effect of laser pulses number on the crystalline structure, surface morphology, optical properties, and films thickness have been studied. XRD analysis shows that the CdS films have polycrystalline and hexagonal nanostructure with three notable peaks along (100), (002), and (101) planes and preferentially orientated along (101). The crystallite size of the preferred orientation was in the range of (21.4 - 27.3 nm). With small pulses number, XRD pattern confirms the formation of CdO with three peaks (111), (200), and (220). Theses peaks gradually reduce with the increasing of the pulses. The absorbance of the films is in the visible part of the spectrum. The band gap of the synthesized films reduces by rising the number of laser pulses. AFM studies indicate that the grain size and surface roughness increase with the film thickness. Due to the good crystalline structure and optical properties of the film of the highest thickness, it has been grown on a wafer silicon substrate for solar cell applications measurements. Hall measurements indicate low resistivity of 0.3×10-2 (Ω.m) and high conductivity of 3.3×10+2 (Ω.m)-1. The efficiency of the n-CdS/ p-Si junction has been calculated to be 3.4 % using I-V characteristic measurement. Keywords: pulsed laser, thin films, structural, optical, morphology, solar cell measurements

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3