Study on Fatigue Behaviors of 0Cr21Mn17Mo2N0.83 High Nitrogen Stainless Steels

Author:

Yang You1,Tang Wei Feng1

Affiliation:

1. Changchun University of Technology

Abstract

High cycle fatigue behaviors of 0Cr21Mn17Mo2N0.83 high nitrogen stainless steels at forged and solid solution state were investigated. High cycle fatigue tests were carried out up to 107cycles at a stress ratio R=0.1 and frequency of 70Hz on specimens using a high frequency fatigue machine. Fatigue fracture surfaces of specimens that in the high cycle fatigue tests were observed using a scanning electron microscope for revealing the micro-mechanisms of fatigue crack initiation and propagation. The results showed that the fatigue limit of test alloys at room temperature is 865.25 MPa (as-forged alloy) and 736.10MPa (solid solution alloy), respectively. The micro-fatigue fracture surface of the test alloys included three representative regions. These regions are fatigue initiation area, fatigue crack propagation area and fatigue fracture area. Fatigue cracks of the test alloys initiate principally at the precipitates, inclusion or uneven stress concentration sites of alloy surface, and propagate along the grain boundary. The fatigue striations of fatigue crack propagation area are very clear. The fatigue fracture of test specimens show the rupture characteristics of quasi cleavage and dimple fracture. The room temperature fatigue properties of as-forged alloy are generally higher than that of the solid solution high nitrogen stainless steel according to the S-N curves fitting results.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3