Affiliation:
1. Universitas Negeri Malang
Abstract
In this work, Fe3O4 nanoparticles (NPs) were synthesized using coprecipitation method and TiO2 NPs were synthesized using sonication method. Fe3O4/polyaniline and TiO2/polyaniline nanocomposites (NCs) were synthesized using polymerization methods. The samples were characterized by X-ray diffractometer, Fourier-transform infrared spectroscopy, and ultraviolet-visible spectroscopy. The results of X-ray diffraction data analysis presented that polyaniline decreased the crystallinity of Fe3O4 and TiO2 NPs. However, the crystal structure of Fe3O4 and TiO2 NPs did not change, which successively formed the cubic spinel and the tetragonal anatase phases. Furthermore, the functional groups of Ti-O-Ti and Fe-O were detected in the wavenumber ranges of 620-580 cm-1 and 410-520 cm-1, respectively. The presence of polyaniline was also detected by the emergence of a functional group of polyaniline which also showed that there was an interaction of Fe3O4 and TiO2 NPs with polyaniline. Meanwhile, the results of UV-Vis data analysis showed that the addition of polyaniline decreased the bandgap energy of Fe3O4 and TiO2 NPs significantly from 2.186 to 2.174 eV and from 3.374 to 3.320 eV, respectively.
Publisher
Trans Tech Publications, Ltd.
Subject
Mechanical Engineering,Mechanics of Materials,General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献