Load Path Transmission in Joining Elements

Author:

Steinfelder Christian1ORCID,Martin Sven2,Brosius Alexander1,Tröster Thomas2

Affiliation:

1. Technische Universität Dresden

2. Paderborn University

Abstract

The mechanical properties of joined structures are determined considerably by the chosen joining technology. With the aim of providing a method that enables a faster and more profound decision-making in the spatial distribution of joining points during product development, a new method for the load path analysis of joining points is presented. For an exemplary car body, the load type in the joining elements, i.e. pure tensile, shear and combined tensile-shear loads, is determined using finite element analysis (FEA). Based on the evaluated loads, the resulting load paths in selected joining points are analyzed using a 2D FE-model of a clinching point. State of the art methods for load path analysis are dependent on the selected coordinate system or the existing stress state. Thus, a general statement about the load transmission path is not possible at this time. Here, a novel method for the analysis of load paths is used, which is independent of the alignment of the analyzed geometry. The basic assumption of the new load path analysis method was confirmed by using a simple specimen with a square hole in different orientations. The results presented here show a possibility to display the load transmission path invariantly. In further steps, the method will be extended for 3D analysis and the investigation of more complex assemblies. The primary goal of this methodical approach is an even load distribution over the joining elements and the component. This will provide a basis for future design approaches aimed at reducing the number of joining elements in joined structures.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Review on the Modeling of the Clinching Process Chain - Part I: Design Phase;Journal of Advanced Joining Processes;2022-11

2. Influence of the Surrounding Sheet Geometry on a Clinched Joint;Key Engineering Materials;2022-07-22

3. Joining with Friction Spun Joint Connectors – Manufacturing and Analysis;IOP Conference Series: Materials Science and Engineering;2021-06-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3