Theoretical Analysis of Chroming Electrolytes and Properties of Chrome Coatings

Author:

Stekolnikov Yu.A.1,Polischuk S.D.2,Churilov D.G.2,Byshov N.V.2,Borychev S.N.2,Uspeunskiy I.A.2,Yukhin I.A.2,Arapov I.S.2

Affiliation:

1. Elets State University Named after I.A. Bunin

2. Ryazan State Agrotechnological University Named after P.A. Kostychev

Abstract

According to the dynamic characteristics of the electrochemical system, according to V.F. Molchanov, it is possible to optimize the composition of chroming electrolyte and predict the properties of chromium deposits depending on the mode of deposition and the transition time. The possibility of using the transition time for the formation of the cathode surface colloid-dispersion film to study the chemical composition of the chroming solution is considered. The chemical composition can be optimized by the position of the maxima and minima on the polarization curves. An electrochemical cell can be described as a system by a differential equation, the form of which is determined by its internal structure, which varies with electrolysis conditions. The properties of the system are evaluated by a number of factors: the time of the transition process, forcing, attenuation, and the quality factor. This approach is used to develop a low-concentration chroming electrolyte with organic additives. Analytical dependences of chromium yield on current, micro hardness, roughness and deposition rate on deposition conditions are obtained. Chroming on non-stationary modes allows the most effective influence on the structure and physical-mechanical properties of coatings. When changing electrolysis parameters, it is possible to influence the structure and physical-mechanical properties of coatings, to obtain various functional chromium coatings with specified characteristics (adjustable micro hardness in thickness, porosity, internal stresses, corrosion resistance, wear resistance, roughness) from a single electrolyte. The use of a low-concentration electrolyte together with non-stationary deposition modes makes possible to increase the chromium current yield, covering and dissipative ability of the electrolyte, deposition rate, producibility and environmental friendliness of the process, and to reduce hydrogenation. The electrolyte with crystal violet additives has an increased current output (up to 28 %), an extended range of obtaining wear-resistant coatings up to 240 A / dm2, a high deposition rate of up to 2.5 μm / min, an increased micro hardness by 100-300 kg / mm2, reduced toxicity, a decreased absorbed hydrogen level at 500-700 cm3 per 100 grams of chrome coating and internal stresses at 600-950 kg / mm2.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Reference20 articles.

1. A.T. Vakhramian and Z.A. Solovyeva Research methods for metal electrodeposition Moscow Science, (1969).

2. Yu.M. Loshkarev, Electroplating and surface treatment 3 (1993) 36-39.

3. L.I. Kadaner, Wear-resistant chrome plating in a spilling solution Kiev Technique, (1970).

4. V.I. Serebrovskiy, V.V. Serebrovskiy, R.I. Safonov and E.S. Kalutskiy, Electrics 4 (2015) 27-31.

5. Yu.D. Hamburg and J. Zangari, Theory and practice of metal electroplating. transl. from English Moscow BINOM Laboratory of knowledge, (2015).

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3