Enhanced Durability of Graphene-Based Epoxy Films

Author:

Naddeo Carlo1,Guadagno Liberata1,Pantani Roberto1,Speranza Vito1,Acquesta Annalisa2,Monetta Tullio2ORCID

Affiliation:

1. University of Salerno

2. University of Naples Federico II

Abstract

Graphene-based nanoparticles are suitable to enhance toughness related to impact, fracture and fatigue of epoxy nanocomposites to make them able to meet industrial requirements. The increase in the mechanical performance of graphene-based films is well known in the literature. This paper highlights an additional beneficial effect of graphene-based nanoparticles, which is related to the increase of the photooxidative resistance of polymeric films. Graphene Nanoplatelets (GNPs) have been incorporated, at different weight percentages, in the epoxy films. Unfilled and nanofilled films (30 ± 1.5 μm thick) have been subjected to the accelerated photo-oxidative degradation by exposing them to UV-A radiation (295–380 nm). AFM-Harmonix modulus maps at the micro and nanoscale level have been detected to investigate the effect of graphene nanoparticle on the mechanical properties of untreated and UV treated unfilled and nanofilled samples. SEM analysis has been used to analyse the effect of graphene on morphological features of the film surface. UV irradiation determines relevant damages of the mechanical properties and morphological feature of the unfilled sample. The experiments carried out on the nanofilled films show that GNPs, dispersed in the epoxy-based films, determine a strong decrease in the entity of the damages of the film surfaces.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3