Development of a Laser Structuring Process for Ceramic Coatings on Injection Molding Tools Produced by MOCVD

Author:

Sommer Michaela1,Fornalczyk Gregor2,Mumme Frank2

Affiliation:

1. Gemeinnuetzige KIMW Forschungs-GmbH

2. Gemeinnützige KIMW Forschungs-GmbH

Abstract

To increase product quality injection molding tools are equipped with innovative tempering technologies. The customers strive for the technology with the lowest energy consumption. Ceramic materials like yttria-stabilized zirconia (YSZ) are able to thermally insulate tool surfaces providing a more precise temperature regulation with intent to shorten cycle times as well as to decrease energy demands during the molding process. High quality ceramic thin films could be applied by metalorganic chemical vapor deposition (MOCVD). Laser machining technologies have been developed for machining the ceramic materials. In this work we demonstrate the fabrication of zirconia based thin films on steel tools via MOCVD using solid metalorganic precursors. Shorter coating times and a solvent free process are some of the advantages of our new developed coating process. The ultrashort pulse laser processing (USPLP) was used to structure the developed MOCVD coating. Using this technology the ceramic material undergoes no thermal stress cracks, because USPLP is characterized by the preference of cold material removal. The laser processing procedure was developed by working out machining parameters for the different materials. The difference between steel and ceramic in the removal behavior was determined immediately so that a machining strategy for the ceramic CVD coating could be designed successfully. The implementation of defined roughness and a carbon fiber like structure in the coating were realized. Coated and laser-structured injection molding tools were tested regarding their desired properties under production conditions.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3