New Approach for Multiplying the Strength and the Formability of Cold Rolled BCC Based Structure Steel through Ultra Fine Structure Technique

Author:

Bahaa-Eldin Hassan1,Eissa Mamdouh1,Al-Sheikh Ahmed2,El-Fawkhry Mohamed Kamal1,Mattar Taha1

Affiliation:

1. Central Metallurgical Research and Development Institute, CMRDI

2. Cairo University

Abstract

Reduction in grain size of bcc based structure steel is still highly concerned in the cold rolled sheet to attain superior mechanical properties. As long as, the reduction of weight is much considered in the structure purposes, the strength/weight ratio of steel is highly demanded. In this study, an innovative technique was applied to attain ferrite grain size with hundreds of nanometer, in tandem with preserving the mechanical properties. In this approach, the micro-alloyed low carbon steel resulted from the thermomechanical process was followed by subcritical annealing regime prior to the first critical transformation temperature. To identify the effect of a micro-alloying element as vanadium, and the effect of subcritical annealing regime on the low carbon steel, two low carbon steel was subjected to studying in this research. The results refer that applying a subcritical annealing regime for the micro-alloyed low carbon steel after hot compression at intercritical annealing temperature can lead for attaining hundreds of nanometer ferrite grain size, which has a powerful effect on promoting the strength of the steel to exceed 1200 Mpa, in one hand with preserving the formability up to 20% as uniform elongation. Unexpectedly, the fine grain size obtained after the innovative technique promotes the impact toughness at room temperature, which is attributed to the fineness and the spheroid morphology of the secondary phase in conjugation with bcc ferrite structure.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3